
A Nonabstract Approach to Lattice RuleCanonical FormsJ. N. Lyness and S. JoeAbstractThe rank and invariants of a general lattice rule conventionally are de�ned interms of the group-theoretic properties of the rule. Here we give a nonabstractde�nition of the rank and invariants by exploiting what we term the Sylowp-decomposition of a lattice rule. This decomposition allows a canonical D�Zform to be calculated for any lattice rule. A new set of necessary and su�cientconditions for recognizing a canonical form is given.1 IntroductionAn s-dimensional lattice rule Q(�) is an equal-weight quadrature rule on [0; 1)s of theform Q(�)f = 1N NXj=1 f(xj);where x1; : : : ;xN are all the points of [0; 1)s that belong to an integration lattice �.An s-dimensional integration lattice is a discrete set of points that is closed undernormal addition and subtraction and that contains the unit lattice �0 as a sublattice.Here �0 is the familiar lattice consisting of all points x = (x1; x2; : : : ; xs), all of whosecomponents xi are integers.It is known [SL89] that every s-dimensional lattice rule may be written in the formQf = Q[t;D;Z; s], whereQ[t;D;Z; s] := 1d1d2 � � � dt d1Xj1=1 d2Xj2=1 � � � dtXjt=1 f  ( tXi=1 ji zidi)! ; (1:1)here t and di are positive integers, zi 2 �0, and fxg 2 [0; 1)s denotes the vector whosecomponents are the fractional parts of the components of x. This form is known asa t-cycle D � Z form of an s-dimensional lattice rule [LK95]. The parameters inthe abbreviation Q[t;D;Z; s] are D, which denotes the t� t diagonal integer matrix10:47a.m., August 6, 1997 1



having positive diagonal elements di, and Z, which denotes the t� s integer matrixhaving rows zi.The number of distinct quadrature points in a lattice rule is known as the order ofthe rule and is denoted by �(Q).De�nition 1.2 The rule form Q[t;D;Z; s] is termed nonrepetitive when the orderof Q is �(Q) = tQi=1 di.On the other hand, a D � Z form may be repetitive; that is, the order of the latticerule is less than d1d2 � � � dt. (One can show that the number of distinct quadraturepoints in a repetitive D � Z form is d1d2 � � � dt=k for some integer k > 1.)A given lattice rule has many nonrepetitive distinct D�Z forms. In [SL89] a generalpartial solution to this problem of nonuniqueness is given. There it is shown thateach lattice rule may be expressed in a nonrepetitive t-cycle D � Z form in whichdi+1 j di, i = 1; 2; : : : ; t�1, and dt > 1 with t � s. Moreover, in such a representation,the values of t and of di are unique to the rule Q and are called the rank of Q and theinvariants of Q respectively. Such a form is termed a canonical form. The de�nitionsgiven there rely heavily on group theory. In fact, the theory of lattice rules formsan excellent application of Kronecker's celebrated group representation theorem; see,for example, [S86, p. 45 et seq.]. However, the practical problem remains of actuallycalculating a canonical form of a general rule given in D � Z form.In a previous paper [LJ96] we treated prime-power rules, that is, rules whose order,�(Q), is a power of some prime. For these rules the invariants have a nonabstractde�nition that is closely related to the ideas underlying projection regularity (see[LJ96]). In that less complicated context, a theory was developed that does not relyon group theory or lattice theory at all. We state here a few key de�nitions andresults from that paper.De�nition 1.3 Let a prime-power rule Q have invariants ni and rank r. Then theform Q = Q[r;D;Z; s] is termed a canonical form of Q if D = diagfn1; n2; : : : ; nrg.De�nition 1.4 The t� t integer matrix D is termed sequential whend1 � d2 � � � � � dt > 1:Theorem 1.5 A necessary and su�cient condition for a D � Z form of a prime-power rule to be canonical is that it be nonrepetitive with sequential D.Theorem 1.6 A necessary and su�cient condition for a D � Z form of a prime-power rule of order p
 to be canonical is that D be sequential and the matrix Z be offull rank modulo p. 2



For a prime-power rule in nonrepetitive form, it follows from De�nition 1.2 that eachdi is a prime power. When D is sequential, this gives di+1 j di, and so the invariantsalso have this property.In this paper we exploit the previous work of [LJ96] on prime-power rules to providea corresponding theory for general rules. This is done by means of a nonabstractmanifestation of the Kronecker theorem mentioned above. This allows us to expressthe D�Z form of a rule Q as a sum of the D�Z forms of the \Sylow p-components"of the rule Q. These Sylow p-components are themselves lattice rules of prime-powerorder. Section 2 is devoted to this decomposition, Theorem 2.19 being the key result.In Section 3 we de�ne the rank and invariants of the general rule in terms of the rankand invariants of the component rules; we de�ne a canonical form; and we show howit may be obtained from a general D�Z form. In Section 4, we complete the theoryby providing in Theorem 4.7 a necessary and su�cient condition for a D�Z form tobe canonical.2 The Sylow p-Component Rule FormsIn this section we introduce notation and algorithmic rules for handling D�Z forms,and we use these to express a rule form as a sum of Sylow p-component rule forms.The transformations listed in the following theorem are well known and have beenwidely used in previous work such as [SL89] and [SJ94].Theorem 2.1 The rule Q = Q[t;D;Z; s] given in (1.1) is unaltered if Z is modi�edby applying one of the following transformations or a sequence of them.(a) Replace zi by `zi for ` an integer satisfying gcd(`; di) = 1.(b) Replace zi by zi + dix for x 2 �0.(c) Replace zi by zi + (mdi=dj)zj for j 6= i, m an integer, and dj j mdi.Other transformations that allow one to change D and Z by consistent row inter-change, removal of common factors, and removal of redundant rows are listed in[LJ96]. In this paper we do not use them explicitly. However, two more transforma-tions are given in Theorem 2.9 below.We now introduce the sum of lattice rules. This is a simple concept.De�nition 2.2 The sum of two s-dimensional integration lattices �1 and �2 is alattice � that comprises all points and only points expressible in the formx = �1x1 + �2x2;where the �i are integers and xi 2 �i, i = 1; 2.3



Colloquially, � is the smallest lattice that contains both �1 and �2.De�nition 2.3 The sum Q = Q1 +Q2of two s-dimensional lattice rules Q1 and Q2 is the rule Q obtained from the sum ofthe corresponding integration lattices for Q1 and Q2.This de�nition extends to the sum of more than two lattice rules in an obvious way.It follows immediately that whenQ1f = 1�(Q1) �(Q1)Xj=1 f(xj) and Q2f = 1�(Q2) �(Q2)Xk=1 f(yk); (2:4)their sum is Qf = (Q1 +Q2)f = 1�(Q1)�(Q2) �(Q2)Xk=1 �(Q1)Xj=1 f(fxj + ykg): (2:5)Lemma 2.6 If Q = Q1 +Q2, then�(Q) � �(Q1)�(Q2);with equality being valid if �(Q1) and �(Q2) are relatively prime.The proof of this result is elementary (and omitted here). In the situation wherethere is equality, the sum is a direct sum; the reader is referred to [JS94] or [SJ94,pp. 53{57] for further details about direct sums in this context.Lemma 2.7 The sum of two rules having forms Q[t1;D1; Z1; s] and Q[t2;D2; Z2; s]respectively, may be expressed in the form Q[t3;D3; Z3; s] with t3 = t1 + t2, D3 =diagfD1;D2g, and Z3 =  Z1Z2 ! :Proof. The result is readily proved by using (1.1), (2.4), and (2.5) with Q1 =Q[t1;D1; Z1; s] and Q2 = Q[t2;D2; Z2; s]. 2It is a short step from dealing with the sum of two rules Q1f and Q2f to the \sum"of two forms Q[t1;D1; Z1; s] and Q[t2;D2; Z2; s] that represent them. One may re-express Lemma 2.7 using the following de�nition.4



De�nition 2.8 A relationQ[t3;D3; Z3; s] � Q[t1;D1; Z1; s] +Q[t2;D2; Z2; s]is valid if and only if the rules represented satisfyQ3f = Q1f +Q2f:This paper relies heavily on this notation and de�nition. Each relation of this typecould be veri�ed by expanding each term in the form of (1.1). But this formalismmakes that unnecessary.We note that, while the sum of two rules is well de�ned, the sum of two forms is not.For example, in Lemma 2.7 one could equally well have set D3 = diagfD2;D1g andZ3 =  Z2Z1 ! :We present a pair of transformations using this notation.Theorem 2.9 When m and n are relatively prime,Q[1;mn; z; s] � Q[1;m; z; s] +Q[1; n; z; s] (2:10)and Q[1;m; z1; s] +Q[1; n; z2; s] � Q[1;mn;mz2+ nz1; s]: (2:11)This notation is convenient for manipulating rule forms. A trivial iterated applicationof Lemma 2.7 provides a decomposition of any t-cycle D � Z form into the sum of1-cycle D � Z forms as follows:Q[t;D;Z; s] � Q[1; d1; z1; s] +Q[1; d2; z2; s] + � � �+Q[1; dt; zt; s]; (2:12)where, as before, zj denotes the jth row of Z. Further decomposition is possible whendetD has more than one prime factor.Lemma 2.13 Let detD have the prime factorization detD = p
11 p
22 � � � p
qq , and letdi have the prime factor decompositiondi = p
1;i1 p
2;i2 � � � p
q;iq ; i = 1; 2; : : : ; q: (2:14)ThenQ[1; di; zi; s] � Q[1; p
1;i1 ; zi; s] +Q[1; p
2;i2 ; zi; s] + � � �+Q[1; p
q;iq ; zi; s]: (2:15)Proof. This follows by repeated application of (2.10) above. 25



The reader will notice that when p is prime,Q[1; p
; z; s] represents a cyclic rule. Thedecompositions (2.12) and (2.15) may be used to express any lattice rule as a sum ofcyclic rules.These results apply as written in cases in which 
j;i = 0, giving p
j;ij = 1. The �nalforms may include forms Q[1; 1; zi; s], which may be included or discarded at will.We now introduce the Sylow p-component of a rule Q. This is de�ned as follows.De�nition 2.16 A point x is of order n when nx 2 �0 (and n is the smallest positiveinteger for which this is true).De�nition 2.17 The Sylow p-component of a lattice rule Q is a lattice rule whoseabscissa set comprises all points of the abscissa set of Q that are of order p
 for anynonnegative integer 
.This corresponds precisely to the Sylow p-subgroup of a given group, the group ele-ments being members of the respective abscissa sets. We note some simple standardproperties.(a) The trivial Sylow p-component with p = 1 is Q[1; 1; Z; s], which represents onlythe single point 0, the origin.(b) When Q is a prime-power rule, it has only one nontrivial Sylow p-component,which coincides with Q.(c) When Q = Q[t;D;Z; s], the only nontrivial Sylow p-components are those cor-responding to any primes p that occur as a factor of detD.It follows that, using (2.12) and (2.15), we may setQ[t;D;Z; s] � tXi=1 qXj=1Q[1; p
j;ij ; zi; s] = qXj=1S(j);where we have de�ned a rule S(j) by one of its D � Z forms, namely,S(j) := tXi=1Q[1; p
j;ij ; zi; s] � Q[t;D(j); Z; s];with D(j) = diagfd(j)1 ; d(j)2 ; : : : ; d(j)t g = diagfp
j;1j ; p
j;2j ; : : : ; p
j;tj g: (2:18)Clearly S(j) contains only points that belong to Q, and it contains only points of orderp
j for various integers 
. No other Sylow p-component contains a point of order p
jfor any 
, except for the origin. Taken together, these facts establish the followingtheorem. 6



Theorem 2.19 Any rule Qmay be expressed as the sum of all its Sylow p-components.There is a Sylow pj-component S(j) for every pj occurring in the prime factor decom-position of �(Q). When Q = Q[t;D;Z; s], one form for S(j) isS(j) = Q[t;D(j); Z; s]; (2:20)where D(j) is given in (2.18).Note that in this D � Z form of the Sylow pj-component rule, the parameters t, Z,and s are the same as those in the D � Z form for Q, and the elements of D(j) areobtained from those of D by retaining only the pj component of each element.This theorem is one of the key results of this paper. It is familiar in a group theorycontext. But here we have obtained a simple calculable D � Z representation of theSylow p-components without demanding that Q be given in canonical form (see thenext section). It is immediately available given any D � Z representation of Q.In view of Lemma 2.6, we have �(Q) = qYj=1 �(S(j)); (2:21)and, following the notation of (2.14) and (2.18), we havedetD = qYj=1detD(j): (2:22)This leads to the following theorem.Theorem 2.23 In the notation of the previous theorem, the form Q[t;D;Z; s] isnonrepetitive if and only if every component form Q[t;D(j); Z; s] is nonrepetitive.Proof. We exploit (2.21) and (2.22) above. First we note that whether or not anyof these forms are repetitive, we have�(S(j)) � detD(j) for all j; (2:24)so it follows that �(Q) = qYj=1 �(S(j)) � qYj=1 detD(j) = detD: (2:25)When all the forms for S(j) are nonrepetitive, the relation in (2.24) is an equality. Thisproduces an equality in (2.25), which shows that the form for Q is also nonrepetitive.Conversely, if one of the forms for S(j) is repetitive, there is one value of j for whichthe relation in (2.24) is a strict inequality; this makes the relation in (2.25) a strictinequality, showing that the form for Q is also repetitive. 27



3 Canonical Form of a General Lattice RuleIn [LJ96], the rank and invariants for prime-power rules are de�ned in a nonabstractmanner. Some of their properties are recalled in the introduction. In this sectionwe exploit these de�nitions to de�ne the same quantities in the context of a generallattice rule. The link that enables the broadening of the de�nition is Theorem 2.19,which asserts that any rule may be decomposed into a sumQ = S(1) + S(2) + � � � + S(q) (3:1)of its Sylow pj-components S(j), j = 1; 2; : : : ; q. Each component is a prime-powerrule, and its rank and invariants satisfy the sequential and divisibility conditionsmentioned in Theorem 1.5 and the discussion preceding it. Let S(j) have rank andinvariants r(j); n(j)1 ; n(j)2 ; : : : ; n(j)s : (3:2)Here it is convenient to include the trivial invariants, that is,n(j)i = 1; i = r(j) + 1; : : : ; s: (3:3)De�nition 3.4 The rank and invariants of a general lattice rule Q arer = max(r(1); r(2); : : : ; r(q)) and ni = n(1)i n(2)i � � �n(q)i ; i = 1; 2; : : : ; r; (3:5)where r(j) and n(j)i are respectively the rank and invariants of the Sylow pj-componentsof Q as speci�ed in (3.1), (3.2), and (3.3) above.This de�nition comprises a nonabstract realization of a standard de�nition based ongroup theory.De�nition 3.6 Let Q have invariants ni and rank r. Then any form Q = Q[r0;D;Z; s]is termed a canonical form of Q if D = diagfn1; n2; : : : ; nr0g, where r02[r; s]:Thus, by de�nition, we see that, as in the case of the simpler prime-power rule, acanonical D � Z form is one in which the elements of D are the actual invariants ofthe rule.Theorem 3.7 A canonical form Q[r;D;Z; s] has the following properties:(a) ni+1 j ni, i = 1; 2; : : : ; r � 1;(b) Q[r;D;Z; s] is nonrepetitive. 8



Proof. The �rst property is inherited from the corresponding property for each ofthe Sylow p-components through (3.5). The second property may be established asfollows. If Q[r;D;Z; s] were repetitive, the transformations of Theorem 2.1 could beused to reduce it to a nonrepetitive form Q[r0;D0; Z 0; s] with detD0 < detD. For anonrepetitive form, �(Q) = detD0; but for a canonical form, detD = �(Q). SincedetD0 6= detD, it follows that a canonical form cannot be repetitive. 2Corollary 3.8 In a canonical form, zi=ni is semiproper, that is, gcd(Zi1; : : : ; Zis; ni) =1.Proof. Suppose zi=ni were not semiproper so that gcd(Zi1; : : : ; Zis; ni) = � for some� > 1. Then we could replace zi by z0i = zi=� and ni by n0i = ni=�, and so the formwould be repetitive, which contradicts Theorem 3.7. 2Clearly the rank and invariants of any ruleQ exist and are unique, since the expansion(3.1) is unique, each component has unique invariants, and these are assembled ina determinate way in (3.5). It is straightforward to show that every rule Q has acanonical form. This follows from the existence of concrete realizations of each stepin the de�nitions.Theorem 3.9 When Q = Q[r;D;Z; s] is a canonical form of Q, then Q[r;D(j); Z; s]is a canonical form of S(j), its Sylow pj-component.The proof of this result is straightforward and is omitted.We now describe in detail how a canonical form of a general ruleQmay be constructedfrom any D � Z form. When Q = Q[t;D;Z; s], we �rst invoke Theorem 2.19 whichasserts that each Sylow pj-component is S(j) = Q[t;D(j); Z; s] where, as usual, D(j)comprises the pj-components of D.If each D(j) is sequential and each D � Z form is nonrepetitive, the original D � Zform is already canonical. Otherwise, it is necessary to form a new representationfor S(j) that is sequential and nonrepetitive. This can be accomplished by using thetransformations of Theorem 2.1 and the others mentioned just after that theorem. In[LJ96] a procedure for doing this is given as part of the proof of Theorem 3.7.When all the Sylow pj -components are in sequential nonrepetitive form, we assemblethem, row by row. It is convenient in this description to provide, for each Sylow pj -component, an s-cycleD�Z form. One way of doing this is to append an appropriatenumber of zero vectors to the Z-matrix and a corresponding identity matrix to D.The Sylow pj -components, now in the form Q[s; �D(j); �Z(j); s], may be re-expressed assXi=1Q[1; �d(j)i ; �z(j)i ; s]:9



Since the ordering is immaterial, we may express Q in the formsXi=10@ qXj=1Q[1; �d(j)i ; �z(j)i ; s]1A :The inner sum may be assembled to give Q[1; �di; �zi; s], where �di = qQj=1 �d(j)i . Thisassembly process may be carried out by making repeated use of the relation (2.11).We then obtain the rule form for Q given by Q[s; �D; �Z; s], where �D = diagf �dig and�Z = 266664 �z1�z2...�zs 377775 :Reference to De�nition 3.6 con�rms that this is a canonical form, with r0 = s: Therank, r, of the rule Q is given by the largest integer i for which �di > 1. Hence, theform obtained by removing the last s� r rows of �Z and making a similar curtailmentto �D is also canonical.4 Recognizing a Canonical FormAlthough we can always obtain a canonical form for a lattice rule, it is sometimes dif-�cult to recognize whether a given form Q[t;D;Z; s] is a canonical form. Of course, acanonical form has some obvious properties. These appear in the following de�nition.De�nition 4.1 The form Q[t;D;Z; s] is termed a candidate form if t � s, each zi=diis semiproper, and di+1 j di; i = 1; 2; : : : ; t� 1; dt > 1:Trivially, a form that is not a candidate form cannot be a canonical form.Theorem 4.2 When Q = Q[t;D;Z; s] is a candidate form, then Q[r;D(j); Z; s] is acandidate form of S(j), its Sylow pj-component.Proof. The sequential property follows from that of Q. Since zi=di is semiproperand d(j)i is a factor of di, zi=d(j)i is also semiproper. 2In Theorem 3.7 and Corollary 3.8 we established that a canonical form satis�es theconditions to be a candidate form and is, in addition, nonrepetitive. The followingtheorem establishes the converse of this statement.10



Theorem 4.3 A nonrepetitive candidate form is canonical.Proof. When Q[t;D;Z; s] is nonrepetitive, Q[t;D(j); Z; s], the form for the Sylowpj -component of Q, is also nonrepetitive (Theorem 2.23). When Q[t;D;Z; s] is acandidate form, the previous theorem shows that Q[t;D(j); Z; s] is also. Thus, theelements d(j)i of D(j) are sequential (De�nition 4.1), and since S(j) is a prime-powerrule, the element d(j)i is the ith invariant of S(j). By de�nition, the ith invariant of Qis ni = qYj=1 d(j)i :This coincides with di, the ith element of D. Thus D contains the invariants of Q,and this is the sole condition for Q[t;D;Z; s] to be a canonical form of Q. 2We note two special cases: the t� s matrix Z is termed column-permuted unit uppertriangular (cpuut) when there exist distinct column indices f�1; �2; : : : ; �min(s;t)g, where�j 2 f1; 2; : : : ; sg, andZk;�m = ( 1; when k = m,0; when k > m, m = 1; 2; : : : ;min(s; t):It follows from [LJ96, Theorem 3.4] that a candidate form in which Z is cpuut isnonrepetitive.Corollary 4.4 A candidate form in which Z is cpuut is a canonical form.When t = s above, the matrix Z is an example of a unimodular matrix. This is onein which jdetZj = 1. Any D�Z form in which Z is unimodular is nonrepetitive (see[LK95, Theorem 2.2]). Thus, in particular, we have the following.Corollary 4.5 A candidate form in which Z is unimodular is a canonical form.We now seek a criterion by which one may recognize whether a candidate form isin fact a canonical form. Like any other rule form, the candidate form represents arule Q, which has Sylow pj-components as detailed in Section 2. However, the D�Zrepresentation S(j) = Q[t;D(j); Z; s] inherits from D the property that it is sequential.Hence there exists a parameter t(j) such that the elements d(j)i are 1 for i > t(j); andthe form may be reduced to S(j) = Q[t(j); �D(j); �Z(j); s]; (4:6)where �Z(j) is a t(j)�s submatrix of Z obtained by removing the �nal s� t(j) rows and�D(j) is a similarly curtailed version of D(j). According to Theorem 1.6 a necessaryand su�cient condition for this form to be nonrepetitive is that �Z(j) be of full rankmodulo pj . And according to Theorem 2.23, the necessary and su�cient conditionfor Q[t;D;Z; s] to be nonrepetitive is that all the above forms for S(j), j = 1; 2; : : : ; q,are nonrepetitive. This leads to the following theorem.11



Theorem 4.7 Let Q[t;D;Z; s] be a candidate form, and let detD require preciselyq distinct primes p1; p2; : : : ; pq. Let t(j) be the largest index i for which di contains afactor pj . Then a necessary and su�cient condition for Q[t;D;Z; s] to be a canonicalform of Q is that for j = 1; 2; : : : ; q the �rst t(j) rows of Z form a matrix of full rankmodulo pj .As an example, consider the candidate D � Z form Q[3;D;Z; 3] withD = 264 2 � 34 � 52 0 00 2 � 5 00 0 5 375 ; Z = 264 7 4 811 16 14 8 11 375 : (4:8)Let us set p1 = 2, p2 = 3, and p3 = 5. Then t(1) = 2; t(2) = 1, and t(3) = 3; andD(1) = diagf2; 2; 1g; �D(1) = diagf2; 2g;D(2) = diagf34; 1; 1g; �D(2) = diagf34g;D(3) = diagf52; 5; 5g; �D(3) = diagf52; 5; 5g;�Z(1) = " 7 4 811 16 1 # ; �Z(1) (mod 2) = " 1 0 01 0 1 # ;�Z(2) = h 7 4 8 i ; �Z(2) (mod 3) = h 1 1 2 i ;�Z(3) = 264 7 4 811 16 14 8 11 375 ; �Z(3) (mod 5) = 264 2 4 31 1 14 3 1 375 :It is immediately clear that �Z(1) ( mod 2) and �Z(2) ( mod 3) are of full rank. One mayverify that det �Z(3) = 900 � 0 (mod 5). The theorem then asserts that the D � Zform is not a canonical form. A canonical form of this rule is given in section 5. (Thereader may verify that the D � Z form is canonical if the �rst row of Z is replacedby [ 7 5 8 ].)The next result is related to Theorem 3.2 of [L93].Theorem 4.9 Suppose we have the two candidate formsQ = Q[t;D;Z; s] and Q0 = Q[t;D0; Z; s]such that the elements of D satisfydi = p
1;i1 p
2;i2 � � � p
q;iq :If the elements of D0 satisfy d0i = p�1;i1 p�2;i2 � � � p�q;iq ;where �j;i = ( 1; when 
j;i � 1;0; when 
j;i = 0;then either both candidate forms are canonical or neither is canonical.12



Proof. In the notation of (4.6), we see from Theorem 4.7 that the requirement isthat certain submatrices of Z, namely, �Z(j), j = 1; 2 : : : ; q, be respectively of full rankmodulo pj . The matrix �Z(j) depends only on the value of tj, which in turn dependsonly on which di have a pj factor and not what the pj factor is. 2Thus, in the example given above, the results about the form being canonical or notare unchanged whenD is altered to anymatrix of the form diagf2�13�15
1 ; 2�25
2 ; 5
3gwith �1 � �2 > 0, �1 > 0, 
1 � 
2 � 
3 > 0, but Z remains as before.5 Miscellaneous ResultsThis section contains a few special results that are relevant when s or t is small.Since they are the basis of no further theory, the proofs, which are not deep, areomitted. They are all concerned with cases in which a form is altered or reducedwithout altering the Z-matrix.Theorem 5.1 Given a candidate form Q[t;D;Z; s], the �rst invariant of the rule Qis n1 = d1.Corollary 5.2 When t = 1, a candidate form is a canonical form.Lemma 5.3 Let Q[2;D;Z; s] be a candidate form with d2 = qQj=1 p
j;2j . A canonicalform is Q[2; ~D;Z; s], where ~d1 = d1, ~d2 = qQj=1 p
j;2(rj�1)j with rj = rank Z (mod pj).This lemma is an almost trivial consequence of Theorem 4.7. The factor (rj � 1) issimply a device to remove, from the product, terms for which rj = 1.Theorem 5.4 Let a prime-power rule S of order p
 have a repetitive D � Z formgiven by Q[t;D;Z; s]. Let Z be of rank ~t modulo p, where ~t < t. Let the ~t� s matrix~Z obtained from Z by removing the �nal t� ~t rows also be of rank ~t modulo p. ThenS = Q[t; ~D;Z; s];where ~D = diagfd1; d2; : : : ; d~t; 1; : : : ; 1g.This last result can be useful in cases where, in a D�Z form of a Sylow-p component,one prefers not to alter Z. Such a situation occurs in the example in the precedingsection. There det �Z(3) � 0 (mod 5), but the �rst two rows are linearly independent.Because, in the example, all three Sylow-pj components can be expressed by usingthe same matrix Z, the �nal canonical form can be expressed in D �Z form in (4.8)13
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